
Throughput Performance of Popular JMS Servers

Michael Menth, Robert Henjes, Christian Zepfel, and Sebastian Gehrsitz
Dept. of Computer Science, University of Wuerzburg

Wuerzburg, Germany

{menth,henjes,gehrsitz,zepfel}@informatik.uni-wuerzburg.de

ABSTRACT
The Java Messaging Service (JMS) facilitates communication among
distributed software components according to the publish/subscribe
principle. If the subscribers install filter rules on the JMS server,
JMS can be used as a message routing platform, but it is not clear
whether its message throughput is sufficiently high to support large-
scale systems. In this paper, we investigate the capacity of three
high performance JMS server implementations: FioranoMQ, SunMQ,
and WebsphereMQ. In contrast to other studies, we focus on the
message throughput in the presence of filters and show that filter-
ing reduces the performance significantly. We present models for
the message processing time of each server and validate them by
measurement.

Categories and Subject Descriptors: D.2.8 [Software Engineer-
ing]: Metrics–[performance measures]

General Terms: Measurement, Performance

Keywords: Publish/Subscribe, Server Performance, Java Messag-
ing Service

1. THE JAVA MESSAGING SERVICE
Messaging facilitates the communication between remote soft-

ware components. The Java Messaging Service (JMS) standard-
izes this message exchange. The so-called publishers generate and
send messages to the JMS server, the so-called subscribers con-
sume these messages – or a subset thereof – from the JMS server,
and the JMS server acts as a relay node, which controls the mes-
sage flow by various message filtering options. This is depicted in
Figure 1. Publishers and subscribers rely on the JMS API and the
JMS server decouples them by acting as an isolating element. As a
consequence, publishers and subscribers do not need to know each
other.

The JMS offers several modes. In the persistent mode, messages
are delivered reliably and in order. In the durable mode, messages
are also forwarded to subscribers that are currently not connected
while in the non-durable mode, messages are forwarded only to
subscribers who are presently online. Thus, the server requires a
significant amount of buffer space to store messages in the durable
mode. In this study, we consider the persistent but non-durable
mode if not mentioned differently.

Information providers with similar themes may be grouped to-
gether and publish to a so-called common topic; only those sub-

This work was funded by Siemens AG, Munich. The authors
alone are responsible for the content of the paper.

Copyright is held by the author/owner.
SIGMetrics/Performance’06, June 26–30, 2006, Saint Malo, France.
ACM 1-59593-320-4/06/0006.

1

2

3

n

1

2

3

m

SubscribersPublishers

Message Flow

Filters Replication 
Grade

JMS
Server

Figure 1: The JMS server decouples publishers and sub-
scribers.

scribers having subscribed for that specific topic receive their mes-
sages. Thus, topics virtually separate the JMS server into several
logical sub-servers. Topics provide only a very coarse and static
method for message selection. In addition, topics need to be config-
ured on the JMS server before system start. Filters are another op-
tion for message selection. A subscriber may install a message filter
on the JMS server, which effects that only the messages matching
the filter rules are forwarded instead of all messages in the corre-
sponding topic. In contrast to topics, filters are installed dynami-
cally during the operation of the server. Figure 2 shows that a JMS
message consists of three parts: the message header, a user defined
property header section, and the message payload itself.

Fixed Header Fields Application Properties Application Data

JMS Message

Header Body

Figure 2: The JMS message structure.

So-called correlation IDs are ordinary 128 byte strings that can
be set in the header of JMS messages. Correlation ID filters try to
match these IDs whereby wildcard filtering is possible, e.g., in the
form of ranges like [#7;#13]. Several application-specific proper-
ties may be set in the property section of the JMS message. Ap-
plication property filters try to match these properties. Unlike to
correlation ID filters, a combination of different properties may be

367



specified which leads to more complex filters with a finer gran-
ularity. After all, topics, correlation ID filtering, and application
property filtering are three different possibilities for message selec-
tion with different semantic granularity and different computational
effort.

2. RESULTS
We first describe some general findings from our experiments

qualitatively and present then quantitative performance models for
the maximum message throughput of each investigated server type.
We consider both the throughput of messages received by the server
as well as the overall rate of messages received and dispatched by
the server.

2.1 General Findings

(1) The throughput of the three investigated server types spans
over several orders of magnitude with FioranoMQ achiev-
ing the highest one, followed by SunMQ, and WebsphereMQ
achieving the lowest one.

(2) The throughput is significantly larger in the non-persistent
mode than in the persistent mode. The difference depends
on the server type.

(3) A message may be replicated and forwarded to r different
subscribers. Then, we call r the replication grade of a mes-
sage. This average replication grade reduces the received
throughput and increases the overall throughput of the server.

(4) The throughput depends also the filter installations. Fiora-
noMQ can handle simple correlation ID filters more effi-
ciently than application property filters while both filter types
requires the same effort for SunMQ and WebsphereMQ.

(5) The message throughput is limited either by the processing
logic for small messages or by the transmission capacity for
large messages.

(6) The number of configured topics hardly affects the overall
throughput of the server.

(7) Complex OR-filters allow a larger message throughput than
an equivalent number of simple filters. The performance gain
depends significantly on the server type.

(8) The complexity of AND-filters reduces the message through-
put for FioranoMQ and SunMQ. The order of the filter com-
ponents matters. This can be used to optimize the formula-
tion of filter rules. In contrast, WebsphereMQ requires the
same time to process a message regardless of the filter com-
plexity and the order of the filter components.

2.2 Performance Models
We conducted extensive and complex experiments to assess the

dependencies of the maximum message throughput on various pa-
rameters. We propose analytical models to characterize the mes-
sage processing time which is the inverse of the received message
throughput. We fit the model parameters such that the formulae
approximate well the experimental throughput.

2.2.1 Performance Model for FioranoMQ
The message processing time depends both on the number of

filters n f ltr installed on the server and the message replication grade
r. A very simple model is already appropriate to characterize the
message processing time B:

B = trcv +n f ltr · t f ltr + r · ttx. (1)

The parameter trcv is a fixed time overhead for each received mes-
sage. The time to check a single filter is t f ltr, and the filtering effort
increases linearly with the number n f ltr of installed filters. Finally,
ttx describes the time to dispatch and to send a single message for
a matching filter. The parameter values trcv =8.52 · 10−7 s, t f ltr =
7.02 ·10−6 s, and ttx =1.70 ·10−5 s describe the server behavior for
correlation ID filters and trcv = 4.10 · 10−6 s, t f ltr = 1.46 · 10−5 s,
and ttx =1.62 ·10−5 s describe it for application property filters.

2.2.2 Performance Model for SunMQ
The message processing time depends on the number of all filters

nall
f ltr, the number of different filters ndi f f

f ltr , and the replication grade
r. The message processing time B can be approximated by

B = trcv +nall
f ltr · tall

f ltr +ndi f f
f ltr · tdi f f

f ltr + r · ttx. (2)

The meaning of the parameters trcv and ttx is like above. The pro-
cessing time for filters is more complex than above, probably due
to internal optimization. The filtering effort increases linearly with
the number of all filters nall

f ltr and the time to check a single fil-

ter is tall
f ltr. The number of different filters imposes an extra over-

head of ndi f f
f ltr · tdi f f

f ltr . The parameter values trcv = 1.14 · 10−4 s,

tall
f ltr = 2.10 · 10−6 s, tdi f f

f ltr = 2.12 · 10−6 s, and ttx = 4.01 · 10−5 s
characterize well the message processing time for the SunMQ both
for correlation ID and application property filtering.

2.2.3 Performance Model for WebsphereMQ
The message processing time depends only on the number of

filters n f ltr. In contrast to FioranoMQ and SunMQ, it does not de-
pend on the replication grade r. Thus, the time to send messages is
obviously so small that it is not noticeable for a replication grade of
up to r =40. The following model approximates well the message
processing time B:

B = trcv +n f ltr ·
√

(n f ltr) · t f ltr (3)

The parameter values trcv = 7.03 · 10−4 s and t f ltr = 1.10 · 10−5 s
approximate well the throughput for both correlation ID and appli-
cation property filtering. A linear model like for the FioranoMQ or
the SunMQ does not work for the approximation of the measure-
ment results.

3. CONCLUSION
In this work, we have compared the message throughput of the

FioranoMQ, SunMQ, and WebsphereMQ Java messaging system
(JMS) server under various conditions. We developed analytical
models to describe the maximum message throughput of the server
depending on the average message replication grade r, the overall
number of installed filters nall

f ltr, and the number of different filters
ndi f f

f ltr . The throughput of all three server types is significantly dif-
ferent and the models also reveal a different scaling behavior with
respect to the above parameters. The models can be used in prac-
tice to estimate whether a special JMS server suffices to handle the
message rate in a certain application scenario. However, the param-
eter values mentioned in this paper are only valid for the hardware
used in our experiments which are documented in [1].

4. REFERENCES
[1] M. Menth, R. Henjes, S. Gehrsitz, and C. Zepfel, “Throughput

Comparison of Professional JMS Servers,” University of
Würzburg, Institute of Computer Science, Technical Report,
No. 380, Mar. 2006.

368


